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Short gravity waves, when superposed on much longer waves of the same type, 
have a tendency to become both shorter and steeper at the crests of the longer 
waves, and correspondingly longer and lower in the troughs. In the present 
paper, by taking into account the non-linear interactions between the two wave 
trains, the changes in wavelength and amplitude of the shorter wave train are 
rigorously calculated. The results differ in some essentials from previous 
estimates by Unna. The variation in energy of the short waves is shown to corre- 
spond to  work done by the longer waves against the radiation stress of the short 
waves, which has previously been overlooked. The concept of the radiation stress 
is likely to be valuable in other problems. 

1. Introduction 
It is well known that when gravity waves of fairly short wavelength ride upon 

the surface of much longer waves such as ocean swell or tidal currents then the 
wavelength of the short waves is diminished at the crests of the long waves and 
increased in the troughs. The phenomenon was pointed out by Unna in a series 
of papers (1941, 1942, 1947). The relative shrinking of the short wavelength L’ 
compared to its mean value L was expressed by Unna (1947) as 

L’ 
- L = 1-a,k,cothk,h (1.1) 

a t  the crests of the long waves, where a2 denotes the amplitude and 2nlk, the 
wavelength of the long waves; h denotes the total mean depth. 

Besides this contraction of the wavelength on the long-wave crests, the 
amplitude of the short waves can be expected to be correspondingly increased. 
On intuitive grounds Unna (1947) suggested the formula 

a’ 
- = 1 +a,k,cothk,h, 
a1 

where a, is the mean value of a’. 
Being unconvinced by Unna’s reasoning, we carried out a systematic 

evaluation of the wave motion by Stokes’s method of approximation, as far as 
the second order. This method allows one to calculate rigorously the change in 
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wavelength and amplitude arising from non-linear interactions between the 
two wave trains. The results are given in $ 2 of the present paper. Equation (1 .1)  
is verified, but in place of (1 .2)  we find 

U’ 

“1 
- = 1 + a2 k2($ coth k,h + 4 tanh k2h) .  (1.3) 

In  deep water (when k2h  + co) both (1.2) and (1 .3 )  tend to the same result 

a’ - = l+a ,k2 .  

“1 

A n  interesting physical interpretation of (1 .3)  can be given. In  $ 3  of this 
paper it is shown that when a train of gravity waves of amplitude a ride upon 
a steady current U, the transfer of energy across any vertical plane normal to 
the motion is the sum of four terms 

Ec, + E U + S, U + ~ J I ~ U ’ ~ ,  (1 .5 )  

where E denotes the mean energy density, c, denotes the group velocity and U’ 
is a modified stream velocity. S, is defined below. The first two terms of (1 .5 )  
represent simply the bodily transport of energy by the group velocity c, and by 
the stream velocity U .  The last term in (1 .5)  represents the transport by the 
stream U’ of its own kinetic energy. All these terms are to be expected. However, 
the third term S,U represents the work done by the current U against the 
radia,tion stress of the waves. S, is given by 

which for short waves reduces to 4E. The quantity S, is one component of a 
two-dimensional stress tensor defined in $ 3. The presence of this term does not 
seem to have been pointed out previously. 

If the short waves are riding not upon a uniform current but upon much 
longer waves, then the alternate contraction and expansion at the surface of the 
longer waves results in work being done against the radiation stress of the short 
waves. In  $ 5  it is shown that if this work is assumed to appear as additional 
energy in the short waves, then there must be a change in the amplitude of the 
short waves precisely by (1.3) This confirms the conclusions of $2 .  

By the same method we are also able to calculate the change in the form of 
short waves riding on very long waves such as tidal currents. Setting k,h < 1 
in equation (1 .3)  gives 

_ -  3% a‘ + 1 + - .  
U 4h (1.7) 

This, however, is valid only when the ratio of the wave frequencies rz/cl is still 
small compared with k,h. If both 02/rl and k,h are small but of the same order 
of magnitude we find, on the crests of the long waves, 

a’ 3kzh - 2 ~ , / ~ 1  
- = l + a  k a ( 2k2 h - r2/a1)2 

This reduces to (1.7) when r2/rl < k,h. 
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The results of the present paper may be extended without difficulty to systems 
of waves crossing at  an arbitrary angle, and to wavelengths short enough to be 
influenced by capillarity. In  the latter case, however, viscosity probably plays 
a predominant role. 

2. Determination of the wave profile 
In  this section we shall give a rigorous evaluation of the wave motion by the 

method of Stokes (1847) as far as the second approximation. 
It is well known that in a real fluid the motion does not remain irrotational for 

long after it is generated from rest, and that a second-order vorticity ultimately 
penetrates the interior (Longuet-Higgins 1953). However, except in the boun- 
dary layers, which are very thin, the vorticity is quasi-steady and produces only 
second-order currents which, to the second approximation, are simply super- 
posed upon the oscillatory motion. Since we shall be concerned only with the 
oscillatory part of the motion, it is therefore sufficient to assume the existence 
of a velocity potential 6; any steady second-order currents may be added 
afterwards. 

In$nite depth 

Take rectangular axes with the x-axis horizontal in the mean surface and the 
z-axis vertically upwards. Let u, p ,  p, c denote the velocity, pressure, density 
and surface elevation respectively. Within the fluid we have the following 
relations 

i u = Vg5) 

I v2$4 = 0, 

P + g z + * u 2 + -  = 0, 1 
P at 

(2.1) 

the second equation being the equation of continuity and the third being 
Bernoulli's integral with the arbitrary function oft  absorbed into 4s. The boun- - 
dary conditions are 

@ + gx + QUZ + - 

and lim V$ = 0, 
2+-00 

where p ,  denotes the pressure at  the free surface (hereafter assumed to be zero). 
The surface conditions ( 2 . 2 )  may be replaced by conditions to be satisfied at 
z = 0 by assuming the left-hand sides to be expansible in a power series in z 



u = €U(1) + €2U(2) + . . . , ' 
q5 = € p  + € 2 p  + . . . , 
g = €p + €2g@) + . . . , 

E! + gx = €p(Q + €2p(2) + . . . , 

where B is a small quantity." On substituting in equations (2.1), (2.3), (2.4), 
we have 

(2-6) 

(2.7) 

$1 = v p ,  
$1) a p  -+- = 0, 
P at 

v 2 p  = 0, 

lim V q P  = 0, 
a+- 03 

and 

Elimination of Q1) from the last two equations gives 

( T + g z )  a p  = o .  
z=o 

(2.9) 

Equations (2.7) and (2.9) are equations for qV1) alone, while the remaining equa- 
tions give 0, p(l) and Q1) in terms of qW. 

As a solution of these equations we select the first-order motion corresponding 
to two progressive surface waves of wave-numbers k, and k,; that is 

= Alekizcos ( k , x - e l t + 0 , ) + A , e ~ ~ ~ c o s ( k , x - e , t + 8 , ) ,  (2.10) 

where A,, A,, rl, r,, k,, k, are constants and 

CT; = gk,, = gk2. (2.11) 

The corresponding free surface is given by 

g(l) = a, sin (k,x - cl t  + 0,) + u, sin (k,x + c,t + 0,), (2.12) 

where (2.13) 

* E is proportional roughly to the surface slope; here, however, E will be used only as an 
ordering parameter. 
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Proceeding now to the second approximation, we have to satisfy 
u'2) = V#'2), 

'I 

(2.14) 

Elimination of Q2) from the last two equations gives 

On substituting the special solution (2.10) in the right-hand side, we see that the 
last group of terms vanishes identically, and we have 

= 2A1A2k1k2(~, - C T ~ )  cos {(kl- k2) x - ( ~ 1 -  C T ~ )  t + (0, - 02)  +in}. 
(2.16) 

This and the above equations for qV2) are satisfied by 

$(2) = ( A l A 2 k l k 2 / ~ 2 ) e ~ ~ ~ - ~ ~ ~ ~ c o s { ( k l - k 2 ) x -  (cr,-u2)t+ (01-02-+n)}i-Ct,  
(2.17) 

where C is an arbitrary constant to be determined by the condition that the 
origin is in the mean surface level. In  fact <c2) may be found from (2.14) : 

(2.18) 

On making the substitutions and writing for short 

we find 

Q2) = - +a2,k, sin 2$, - $a; k2 sin 2$2, - a,a2(k, COB $, cos $2 - k2 sin $, sin $,). 

Thus if the small parameter e is absorbed into a,, a2 by writing 8 = 1, we have 

k , x - ~ , t + + ,  = $,, k2x-CT2t+8, = (2.19) 

(2.20) 

t; = (a, sin $, - &a2,k, sin 2$,) + (a, sin $2 - Qag k, sin 2$,) 

- a,a2(k, cos #-, cos $2 - k2 sin $l sin $2) + . . . . (2.21) 

It is supposed that one of the waves is short compared with the other, say 
k, B k,, and we wish to examine the influence of the second wave upon the first. 
For this purpose the terms in a;, a2, a; are irrelevant, and the remaining terms 
in (2.21) may be written 

(2.22) a, sin 1 + a2k2 sin $2) - a, cos $,(a2 k, cos $J. 
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Now if P, Q are any small quantities (varying slowly compared to @,)) the 

(3.23) expression 
< =  a,(l+P)sin$l+al&cosII.l 

represents a wave of slightly modified amplitude 

a' = a,(l +P) ,  

and of slightly modified wave-number 

k ' = k ,  I+-- . ( ;,;:) 

(2.24) 

(2.25) 

Writing P = a,k,sin@,, Q = - a2kl cos $2) (2.26) 

we see that the amplitude of the small waves is increased by a factor 

a' 
- = l+P  = l+cr,k,sin$,, 
a, 

(2.27) 

and the wave-number is increased by the same factor; the wavelength is therefore 
correspondingly reduced. This factor varies between ( 1  + a,k,) on the crests of 
the long wave and (1 - a,,%,) in the troughs. 

Finite depth 

We now suppose that the water is of uniform finite depth h and that k,h, k,h 
are not necessarily large. The boundary condition a t  the bottom ( z  = - h) is 
that the vertical velocity vanishes 

and so 

(2.28) 

(2.29) 

In  order that the elevation of the free surface may be given by 

Q1) = a, sin y9, + a, sin $, (2.30) 

in the first approximation, we must have 

cosh k,(z + h )  cos $,, (2.31) a2 f l2  (1) = - B1 cosh k,(z + h) cos $, - ' k,sinhk,h k, sinh k, h 

where a2, = gk, tanh k, h, B: = gk, tanh k,h. (2.32) 

The evaluation of the second approximation now proceeds exactly as before. 
The algebra is somewhat longer, but may be simplified by omitting all terms 
except those involving the product u1u2 in which alone we are interested. This 
being understood we have for the surface condition 

where 
A = - $ia,a,[3BlB,(B, - B,) (1 + a,a,) + a?(af - 1) - (r3(a2 

B = -~a1u,[2~,B,(B,+cr,)(1-ol,a,)-B~(af- l)-(rZ"(a$- l)], 
'-'"'} (2.34) 
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and where we have written 

CX, = cothk,h, a2 = cothk,h (2.35) 

for brevity. The solution of this equation satisfying Laplace’s equation and 
equation (2.29) is 

.___. A cosh (k - k2)(z  + h) sin ($, - $,)I 
(2) - ’ - - (a, - cosh (k, - k,)h +g(k, - k,) sinh (k, - k2)h 

(2.36) + -  Bcosh (k, + k,)(z + h)  sin ($, + $2) _.__ ~ 

- (a, + a,), cosh (k, + k,)h+g(k, + k2)  sinh (k, + k,)h ’ 

On substituting this expression in (2.18) and using the period equations (2.32), 
we find 

where 
gF2’ = +a,a,[C cos ($1- $2) - D cos ($1 + *,)I, (2.37) 

c = [2a,a,(a,-(Tz) P+a,a,)+d(a?- 1 1 - 4 4 -  1 ) 1 ( ~ 1 - ~ 2 )  (a,%!- ._-__ 1) 
c;(cL;- i)-~al~,(a,~,-i)+~(r2,(a(r2,- 1) 

+(a~++(r2,)-ala2(ala2+1), (2.38) 

and D is given by a similar expression with the signs of a,, a, reversed. A more 
convenient form for <(*), equivalent to the above, is 

<(2) = a,a,k,/a,[E cos $, COB p2 + F sin $, sin $2], (2.39) 
where 

alaz[(a? - 1)2-A2(3a? + 1) (a; - 1) -A4(3a(r2, + 1) (Ef- 1) +he@; - 1)2] 
+ 2~3(a;a(r2, - 1) (a? +a;) 

[(a;- 1)-2ha,a2+A2(a;- 1)]2-4A2 9 

__________ ~~~ -__ E =  

(2.40) 

-2a,a,[A(a,4- l ) + A 5 ( a $ -  l)]+((a~+a(r2,+2a9ol(r2,)[h2(aq- l ) + A 4 ( a i - l ) ]  
F =  [(a! - 1) - 2Aa,a2 + A2(ai - 1)12 - 4A2 , 

(2.41) 

02/a, = A. (2.42) 
and where we have written 

The quantities P, Q of equation (2.23) are now given by 

(2.43) 

The case of deep water is easily retrieved from the above expressions by letting 

a,-+ 1, a2+ 1 (2.44) 

(in that order, since a, > a,). We then find 

E -+ - 1, F -+ h2 = k2/k l ,  (2.45) 

and the equations (2.43) for P and Q reduce to (2.26). 
Let us now suppose that the shorter waves are effectively in deep water 

( e - V  is negligible) but that the depth h is not necessarily great compared with 
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the wavelength of the long waves. Under these conditions a, tends to 1 and 
P(a; - 1) becomes a factor in both numerator and denominator of E and F. 
Hence 

(2.46) 

(2.47) 

* I  - 2a,(2 -ha,) + 2h - h4a2(ai - 1 )  
( 2  - ha,), - A2 

E =  

F =  
- %,A3( 1 + a;) + h2( 1 + 3 4 )  

( 2  - ha,), - A2 

Of particular interest to us is the case when h is very small. Then 

1 f 3a; 
E = -012, F = h2- 

4 ’  

and so 

Q = -a,k,a,cos$,. I 
Hence the wave amplitude is increased by a factor 

a’ - = 1 + a&,( $ tanh k, h + 2 coth k, h) sin $, 
a1 

(2.48) 

(2.49) 

and the wave-number is increased by a factor 

- ‘‘ = 1 + a2k2 coth k, h sin k2. (2 .50)  
kl 

This is always assuming that k, h is not very small also. 
The case when the longer waves are effectively in shallow water, that is 

1 

a1 
tanhk,h = - = p < 1 (2.51) 

may also be studied. Such a situation may occur, for example, with waves 
riding on a tidal current. But the small quantities A, p may be of the same order 
of magnitude. In a typical situation we might have waves of period Tl = 10 
seconds riding on a tidal stream of period T, = 12.4 hours, in 50 fathoms of water. 

(2.52) 
Then 

Q, TI = - = - = 2.2 x 10-4 
Q1 Tz 

2nh p + k2h = ~ = 4 . 4 ~  (2.53) 
T2 J(9h) 

and 

Retaining the terms of lowest order in both A and ,u, we find from (2.46) 

and so from (2.43) 

(2.54) 

(2 .55)  
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The changes in wave amplitude and wave-number are therefore given by 

and sin $2. 
k‘ 
Ic, 

When Alp is small these equations reduce to 

a‘ 3a 
- = 1 + 2 s i n k 2 ,  
a, 4h 

(2.56) 

(2.57) 

(2.58) 

a2 (2.59) 

The above results for shallow water may also be deduced directly starting 

k’ 
k - = l + p l $ , ,  and 

respectively . 

from a velocity potential 

(2.60) 

The only other special cases of interest are when the longer waves are shallow- 
water waves and the shorter waves are either shallow-water or deep-water waves. 
However, the results are all contained in equation (2.41), and the appropriate 
simplifications may be left to the reader. 

Standing waves 

So far we have considered only waves of progressive type riding on longer waves, 
also of progressive type, travelling in the same direction. 

It is evident, however, that when his very small ( A  < ,a) the expressions for the 
shortening or the steepening of the waves are unaffected if h is reversed in sign, 
that is if the direction of one of the waves is reversed. Hence the shortening and 
steepening of the waves are the same whether the second system of waves is 
travelling in the same or opposite direction to the first. 

Further, the interaction terms, on which these effects depend, are evidently 
linear in the two wave amplitudes a,, a2 separately. It follows that, if two of the 
longer waves are superposed to give a standing wave, and if the short progres- 
sive waves ride on top of these, the relative shortening and steepening will be 
similar. More precisely if 

<(l) = a, sin (k,x - a,t + 0,) + a2 sin (k2x - a2t  + 62) + az sin (k2x  + a,t + 8,) 
= a,sin (k,x-cr,t+B,)+2a2sink2x cos(cr2t+02), (2.61) 

then on the crests of the longer waves the amplitude of the shorter waves is found 
to increase by a factor 

1 +a,k,(*tanhk,h+$cothkh), (2.62) 

and the wavelength is diminished by a factor 

1 + 2a2k2 coth k, h. (2.63) 

If a2 is written for 2a2 these formulae are similar to (2.49) and (2.50). 
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Similarly, if two short waves are added to produce a short standing wave, then 
by the linearity of the interaction terms it follows that the changes in amplitude 
and wavelength of the combined wave are given by identical expressions, both 
when the longer waves are progressive and when they are standing waves. 

On the other hand, in shallow water when his not much less than p ,  the change 
of form of short progressive waves depends upon their direction relative to the 
longer waves. Hence different formulae for standing waves result, which may 
be deduced without difficulty from equations (2.56) and (2.57). 

3. The radiation stresses 
In  order to interpret physically the conclusions of 9 2, we first consider from 

a general point of view the transfer of energy by surface waves on a steady, 
uniform current. 

In  a non-viscous fluid, the rate of transfer of energy across a surface fixed in 
space is given by 

R = /Is ( p  + & p u 2  + pgz) u . n dS, 

where n denotes the unit normal to the surface, and z is measured vertically 
upwards. Hence the mean rate of transfer across a vertical plane x = const., 
per unit distance in the y-direction, is 

5 
R, =I-, (P + *PU2 + p g 4  udz, (3.2) 

where z = c(t) denotes the free surface, and the mean value with respect to time, 
indicated by a bar, is taken after performing the integration. We now express 
the velocity as the sum of two parts 

u = U+u' ,  (3.3) 

where U = ( U ,  0 , O )  denotes the mean stream velocity and u' is the additional 
velocity due to  the wave motion. It may be assumed that the mean value of u' 
a t  any point in the interior is zero 

and further that U is independent of x.* On substituting (3.3) into (3.3) and 
(3.4) 2 = 

taking mean values, we have identically 

R, = Ro+R,+R2+R3,  

where R, = ( p  + +puj2 + pgx) u' dx,  

R, =J ' ( p + + p ~ ' ~ + p g z + p u ' * ) d z  U ,  
-h 

(3.5) 

(3.6) 

* These assumptions taken together are valid only for irrotational flow; vorticity may 
be taken into account by supposing U t o  depend upon z.  
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Let us consider these terms separately. The first term Ro is simply equal to the 
energy transfer by the waves in the absence of a steady stream. Adapting the 
notation of 3 2 ,  we have 

I < = a cos (kx - at + 8 )  + O(a2k), 

a a  
k sinh Lh 

#=--  cosh k(z  + h )  sin (kx - at + 8 )  + O(a2a),  
(3.7) 

where az = gk tanh kh, alk = c. (3.8) 

Hence it is easily found that, to second order, 

where E = ipga2 (3.10) 

denotes the mean energy density per unit horizontal area and 

Skh c = - = & j l +  d g  
dk: sinb2khh) (3.11) 

denotes the group velocity (cf. Lamb 1932, 0 337). 
The second term in (3.6) may be separated into two parts 

R, = R,, + R12, (3.12) 

(3.13) i where R,, = J:h (+PU’~ fpgz)  dx U + ipgh2U = E U ,  

R,, = I-, ( p  +puf2)  dx U - ipgh2U = SxU 
-_ 

5 

The term R,, is self-explanatory; it is the bodily transport of kinetic and gravi- 
tational energy by the mean velocity U. The term R,, is more interesting and 
its presence does not seem to have been previously noticed. It represents the 
work done by the mean velocity U against the radiation stress defined by 

8, = ’ ( p  + p u f 2 )  d:: - $pgh2. 
- h 

(3.14) 

To interpret this expression we divide it again into two parts: first take the 
integral with respect to x up to a fixed point, say the mean level x = 0. (If 6 < 0 
then p and u may be extended analytically.) Thus we have 

T, = + pu’,) dz - +pgh2, (3.15) 

say. In  this expression the quantity p p  represents the well-known Reynolds 
stress, which arises because the excess velocity u’ transfers horizontal momentum 
pu‘ a t  a rate put,; even when u‘ is negative the contribution to the Reynolds 
stress is positive. 

To obtain S, we have only to add to T, the quantity 

J o  
(3.16) 
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(the integral being interpreted in the usual way when 6 < 0). In  this expression 
the term paf2 contributes only a small quantity of the third order. The remaining 
term p gives a positive contribution to 8, since when 6 is positive (the surface 
is above the mean level) so also is the pressure, and when [is negative so also isp; 
in fact near the mean level p is given almost by the hydrostatic pressure term 
pg( [ - z )  ; hence 

z, .i. ~ o c P g ( ~ - z ) d z  = 4pgF. (3.17) 

It will be seen that this term arises essentially from the deformation of the 
free surface. 

On the other hand, to evaluate T, we must express jj to the second order in the 
wave amplitude u: assuming 5; = 0, we find 

cosh2 k(z + h). p = -pgz-- 
sinh 2kh 

- 
(3.18) 

It will be seen that the second term on the right is negative, so that the mean 
pressure at a point is actually reduced by the presence of the waves. On sub- 
stituting in (3.15) and (3.17) we have, to order a,, 

zx = ipgu2. J 
Combining these, we have 

Z = -  a 2 -  (,inZ&+;) = '(?-;)' 

(3.19) 

(3.20) 

Thus S, is an additional stress, due to the wave motion, per unit length across 
a plane normal to the direction of wave propagation. It is composed of the 
integrated Reynolds stress, plus the stress due to the correlation between surface 
elevation and pressure, less the effect of the reduction in the average pressure 
in the body of the fluid due to the presence of the waves. Altogether 

R, = ( E + S x ) U  = E -+- U .  (3.21) 

The last two terms in (3.6) are easily evaluated. Since 2 vanishes everywhere 

R, = $EU2/c, R, = iphU3. (3.22) 

But since the motion is irrotational there is, owing to the mass-transport velocity, 
a net momentum Elc in the direction of wave propagation (Stokes 1847), that 
is, a mean velocity Elcph. Writing 

U + E/cph = U' (3.23) 

(2: :> 
in the interior of the fluid, and [ = 0, we have 

and substituting in (3.22) we have, to the present order of approximation, 

R, + R, = +phUI3 (3.24) 

which represents the transport of the kinetic energy of the current by itself. 
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Collecting together the various terms, we find 

B, = Ecg + EU + S, U + 4 ~ h U ’ ~ ,  (3.25) 

where S, and U‘ are given by (3.20) and (3.23). 
I n  an exactly similar way we may calculate the flow of energy in the y-direction 

in the presence of a steady transverse current U = (0, V ,  0). This is given by 
the integral 

R, = J:h ( p  + +put2 +pgz + Y 2 )  Vdz ,  (3.26) 

which is easily found to be 
R, = EV+S,V++phV3, (3.27) 

where (3.28) 

In  the general case of a mean stream velocity U = ( U ,  V ,  0) the transfer of 
energy across a vertical plane in direction n = (1, m, 0 )  is 

R = ( p  + +put2 +pgz + p u t .  u + +put) (u’+ u). ndx, 

which by exactly similar analysis is found to be 

R = Ecg .n+ EU.n+ U .  S .n+ +phUt2(U’. n), 

where cg = ( C p  0,O) 

denotes the vector group velocity, 

U’ = (U  + E/pch, V ,  0) 

denotes the modified stream velocity, and where S denotes the tensor 

S may be called the stress tensor of the wave motion. In  full it  is 

In  very deep water (cg = hc) it becomes 

and in shallow water (cg = c)  it  becomes 

s = ( y  &). 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

It is interesting to note that there is also a transport of energy corresponding 
to a vertical component of velocity W across the horizontal plane z = constant. 
In  fact the mean energy transport per unit horizontal area is 

37 

( p  + +pu‘2 +pgx + pw’ W + +p W 2 )  (w‘ + W).  (3.37) 
Fluid Mech. 8 
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The terms independent of W together vanish identically (there is no upwards 
transport of energy in an ordinary surface wave). The terms proportional to 

In  deep water (kh $ 1) this becomes 

+ Wpga2k e-2k5, (3.39) 

which is negligible below about half a wavelength. 

4. The relation between wave amplitude and energy in an accelerated 
wave 

In  the preceding section we have calculated the transfer of energy horizontally 
when surface waves are superposed upon a steady, uniform current. We propose 
in the following to investigate the case when the surface waves ride not upon a 
steady current but upon a much longer wave, as in $ 2,  that is to  say in place of 
the steady current U of 5 3 we have instead the orbital velocity of the long waves. 
(This latter velocity is however supposed small compared with the phase velocity 
of the short waves.) 

If the wavelength of the longer waves is sufficiently great compared with that 
of the shorter waves, then it is permissible to regard the orbital velocity U as 
being approximately constant and uniform over a period and wavelength, 
respectively, of the shorter waves. To a certain extent therefore we may make 
use of the formulae of $3.  However, a significant factor is introduced by the 
presence of a vertical acceleration in the longer waves; this alters the relation 
between the amplitude and the energy of the short waves, as will now be shown. 

We shall consider from a general point of view the relation between the 
potential and the kinetic energy of a system undergoing vertical movements. 

The discussion of energy relations in frames of reference not moving with 
constant acceleration leads generally to complications. Therefore we shall 
agree from the start to refer all energies to a stationary frame of reference. 

In  the stationary frame of reference, a progressive wave train of amplitude 
a' will have a gravitational potential energy 

P.E. = ipga'' (4.1) 

per unit horizontal distance (apart from terms independent of the wave ampli- 
tude a' and terms of higher order than the second). 

Consider on the other hand the kinetic energy, measured in the same frame of 
reference. A very general theorem in dynamics states that the kinetic energy 
of a system of particles of mass mi and velocity vi is given by 

K.E. = $MV2 + 2 +mi(vi - V)', (4.2) 
i 

where M is the total mass and V the velocity of the centre of mass. Now the 
vertical co-ordinate 2 of the centre of mass of a wave train differs from the 
vertical co-ordinate Z, of the mean free surface by an amount 

Z - Z, = &parz/M + constant (4.3) 
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(neglecting terms of higher order). Hence the vertical velocity of the centre of 
mass differs from that of the free surface by an amount 

The first term on the right of (4.2) can therefore be written 

a 
+MVg + W, at ($pal2). 

(4.4) 

(4.5) 

The last term in (4.2) represents simply the kinetic energy calculated with 
reference to aframe moving (nearly) with the free surface and is therefore given by 

$pa’%’,/ k’ , (4.6) 

where 2~r/(+‘ and 2nlIc‘ are the period and wavelength of the waves in the moving 
frame. But since this frame is accelerated these are related by the equations 

g ‘ 2  = g’k’, (4-7) 

where g‘ is the apparent value* of gravity 

aw 
at 

g’ = g+--S .  

Altogether then we have 
a 
at 

K.E. = +HVg + iPga‘2 +- (ipa”Ww,). 

(4.8) 

(4.9) 

The total wave energy E’ may be defined as those parts of the kinetic-plus- 
potential energy which depend on the wave amplitude only, i.e. 

a 
at 

E’ = Qpgar2+- (&pa‘2Ws). 

When aa’2/i3t and W, are both small quantities this expression becomes 

(4.10) 

(4.11) 

5. A physical interpretation of the results of 52 
In  the situation described in $ 2  we may regard the shorter wavm as being 

superposed upon the longer waves, whose orbital velocity near the free surface 
has the components 

U = a, g2 coth k, h sin @2, 

W = - a, (T, cos k2. 
Consider first the changes in wavelength of the shorter waves. We make the 
physical assumption that the wavelength of the short waves expands in proportion 
to the stretching of the surface by the long waves. 

* It is assumed that (l/g’) ag‘/at is small compared with u’. 
37-2 
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Now two particles in the surface which initially are separated by a distance 
dx have a small relative velocity (aU/ax)dx. The separation of these particles 
after time t is therefore given by 

where to a first approximation aU/ax may be evaluated at the original position x. 
The relative stretching of the surface is therefore given by 

1 + J: dt = 1 - a,k, coth k2h sin +,. (5.3) 

The relative increase in wave-number of the short waves is the reciprocal of 
this expression, or 

in agreement with (3.50). 

following assumptions. 

tortion caused by stretching of the surface). 

1 + a, E ,  coth k, h sin y?,, (5.4) 

Now to account for the change in the wave amplitude we shall make the 

(a )  The energy density of the short waves is given by (4.11) (despite the dis- 

( b )  The rate of transfer of short-wave energy is given by 

E’(cu + U )  + s, u (5 .5)  
as in $3. 

the radiation stress appears as short-wave energy). 
(c) The short-wave energy is conserved (and in particular that work done against 

With these assumptions the equation for the budget of short-wave energy 

[E’(c, + U )  +S, U]. a 
at ax ~ = -_ aE’ becomes 

To the order of approximation with which we are concerned we may take on the 
right-hand side of (5.6) 

E‘ = const. = ipga? = El ,  (5.7) 

and similarly S, = const., so that (5.6) reduces to 

au aE‘ a 
ax at 

__- - -E  -(cu+ U)-S,-. ax 

The physical interpretation of this last equation is that the rate of change of 
the short-wave content between x and x+dx is determined by the divergence 
of the energy transport due to the group velocity cu and the ambient flow U ,  
plus the rate at which the convergence of the ambient flow, (aU/ax), doea work 
against the radiation stress 8,. Our assumption is that in this case the work done 
against the radiation stress appears as additional wave energy (although it is 
not possible to assert that such would be the case in other circumstances), 

The term S,aU/ax appearing in (5.8) is closely analogous to the term 
uiujXJ,/axj which appears in the equations for turbulent energy and the term 
p V .  V which occurs in the energy expression for turbulent flows. 

__ 
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Now, on relacing X, by (3.19) and E by El,  we have 

(5.10) 

Since U represents a progressive wave motion, the operation a/ax may be replaced 

aE’ 1 iau 
at 

by - ( 1/c2) ajat, giving 
-- = (5.11) 

Integration with respect to t (from an instant when the surface crosses the mean 
level and U = 0, E = E l )  gives 

E’ -El = El(?+:) c, 
2 c2 

or 

Substituting for E‘ from (4.11), we obtain 

and so, since U and W are both of order a2r2, 

a’ - I +  -+- 1 u l a w  (2 J C 2  4s at 
_ -  
a, 

In the case when the shorter waves are in deep water, cg/cl = 4 and hence 

3u l a w  
a1 4c, 4s at a 

- I+-- - - -  a’ _ -  

Since, from (5.1) and (2.32), 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

U 
- = a2 E ,  coth k, h sin $2, 
c2 

-law = a s i n $ ,  = a2k2tanhIc2h sin$r,, 
g at g 

equation (5.16) is equivaIent to (2.49). Thus we have verified both equations 
(2.49) and (2.50) by alternative reasoning. 

It will be seen that in shallow water, when the term ( l /g)  a W/at proportional 
to the vertical acceleration, is negligible, we have from (5.15) and (5.16) 

and 
a’ 3 u  
- = I + - - ,  
a1 4 c2 

(5.18) 

(5.19) 

respectively, the last equation being equivalent to (2.58). 
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The derivation of (5.16), (5.18) and (5.19) does not depend upon the sinusoidal 
character of the longer waves but only upon their being progressive. These 
formulae can therefore be expected to remain valid for short waves riding on 
cnoidal or solitary waves, or any other kind of progressive disturbance, provided 
it is sufficiently long. 

Equation (5.16) can be further generalized to any disturbance consisting of 
the sum of a number of wave motions in which the velocities c(2) may be positive 
or negative. Thus we have 

(5.20) 

where Z(+) denotes the sum over all values of i for which c t )  is positive, and Z-) 
the corresponding sum for cf) negative. In  shallow water, when cf) = _+.J(gh) 
we have 

(5.21) 

It should be noted that the present method is not capable of yielding in a 
simple way the more refmed formulae (2.56) and (2.57) which are applicable 
when the ratio of the wave frequencies is no longer small compared with k,h. 
For deriving these, the longer but more rigorous method of § 2 is to be preferred. 

6.  On a result of Unna 
As mentioned in 3 1, a formula for the change in amplitude essentially 

different from th% which we have found was suggested by Unna (1941, 1947); 
his result is stated in equation (1.2). 

Unna apparently did not work out the wave interactions exactly but relied on 
a physical argument. His reasoning differs from ours in two respects. First, he 
neglects entirely the work done by the longer waves against the radiation stress 
S,, which we have taken into account. Secondly, he calculates the potential 
energy of the waves in the accelerated frame of reference, replacing g by 
g +  aW,/at in equation (4.1). He then assumes that kinetic and potential energy 
are conserved in the accelerated system. 

It is not difficult to show that the kinetic-plus-potential energy is not generally 
conserved in an accelerated frame of reference, even when the acceleration is 
slow compared to the natural period of oscillation of the system. As examples 
we may quote a simple pendulum hinged at a point which is accelerated vertic- 
ally, or the oscillations of water in a U-tube likewise accelerated. 

The argument from conservation of energy therefore fails unless it is applied 
in a fixed or inertial frame of reference, as in $§ 4 and 5. If an accelerated frame 
of reference is used it must be supposed that there is some kind of interaction 
between the dynamical system and the accelerating forces. 

In  the case of deep water (k,h 9 1) it happens that Unna's two mistakes- 
neglect of the radiation stress and assumption of energy conservation in the 
accelerated system-exactly cancel. But that they do not generally cancel is 
shown by the difference between equations (1.2) and (1.3). 
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7. Conclusions 
The change in wavelength of short waves on the crests of longer waves can be 

interpreted as being due simply to the contraction of the particles in the longer 
wave. 

However, to account for the increase in the amplitude of the short waves it is 
necessary to allow for the work done by the longer waves against the radiation 
stress of the short waves. This work is converted into short-wave energy, and 
produces a steepening of the short waves beyond what was previously expected. 

The radiation stress is likely to play an important part in other situations, 
for example in waves riding on steady but non-uniform currents. Without close 
examination it cannot be assumed that work done against the radiation stress 
must necessarily appear as additional wave energy. But we have shown that in 
the present situation at least this assumption proves correct. 
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